Logistics/Supply Chain Customer Service

"Logistics is no longer the 'last frontier of cost reduction,' it's the new frontier of demand generation."

Customer Service in Planning Triangle

- Inventory Strategy
 - Forecasting
 - Inventory decisions
 - Purchasing and supply scheduling decisions
 - Storage fundamentals
 - Storage decisions

- Transport Strategy
 - Transport fundamentals
 - Transport decisions

- Customer service goals
 - The product
 - Logistics service
 - Ord. proc. & Info. sys.

- Location Strategy
 - Location decisions
 - The network planning process
Customer Service Defined

- Customer service is generally presumed to be a means by which companies attempt to differentiate their product, keep customers loyal, increase sales, and improve profits.

- Its elements are:
 - Price
 - Product quality
 - Service

- It is an integral part of the marketing mix of:
 - Price
 - Product
 - Promotion
 - Physical Distribution

- Relative importance of service elements
 - Physical distribution variables dominate price, product, and promotional considerations as customer service considerations
 - Product availability and order cycle time are dominant physical distribution variables

Customer Service Elements

```
Pretransaction elements
- Written statement of policy
- Statement in hands of customer
- Organizational structure
- System flexibility
- Technical services

Transaction elements
- Stockout level
- Ability to back order
- Elements of order cycle
- Time
- Transship
- System accuracy
- Order conveniences
- Product substitution

Posttransaction elements
- Installation, warranty alterations, repairs, parts
- Product tracking
- Customer claims, complaints
- Product packaging
- Temporary replacement of product during repairs
```
Common Customer Service Complaints

- **31%** Product or quality mistakes
- **12%** Damaged goods
- **6%** Frequently cut items
- **7%** Other
- **44%** Late delivery

Penalties for Customer Service Failures

- **29%** Reduced the volume of business
- **16%** Discontinued items
- **26%** Called in salesman or manager
- **9%** Refused to purchase new items
- **18%** Stopped all purchases with supplier
- **2%** Refused to support promotion

Most Important Customer Service Elements

- On-time delivery
- Order fill rate
- Product condition
- Accurate documentation

Appraise This Measure of Logistics Customer Service

Percent of customer orders shipped by customer request date

Parker-Hannifin Corp.
Order Cycle Time

- Order cycle time contains the basic elements of customer service where logistics customer service is defined as:

 the time elapsed between when a customer order, purchase order, or service request is placed by a customer and when it is received by that customer.

- Order cycle elements
 - Transport time
 - Order transmittal time
 - Order processing and assembly time
 - Production time
 - Stock availability

- Order cycle time is expressed as a bimodal frequency distribution

- Constraints on order cycle time
 - Order processing priorities
 - Order condition standards (e.g., damage and filling accuracy)
 - Order constraints (e.g., size minimum and placement schedule)

Components of a Customer Order Cycle
Importance of Logistics Customer Service

- Service affects sales
 - From a GTE/Sylvania study:

 ...distribution, when it provides the proper levels of service to meet customer needs, can lead directly to increased sales, increased market share, and ultimately to increased profit contribution and growth.

 - Service differences have been shown to account for 5 to 6% variation in supplier sales

- Service affects customer patronage
 - Service plays a critical role in maintaining the customer base:

 On the average it is approximately 6 times more expensive to develop a new customer than it is to keep a current one.

Service Observations

- The dominant customer service elements are logistical in nature

- Late delivery is the most common service complaint and speed of delivery is the most important service element

- The penalty for service failure is primarily reduced patronage, i.e., lost sales

- The logistics customer service effect on sales is difficult to determine
Modeling a Sales-Service Relationship

- A mathematical expression of the level of service provided and the revenue generated
- It is needed to find the optimal service level
- A theoretical basis for the relationship
- Methods for determining the curve in practice
 - Two-points method
 - Before-after experiments
 - Game playing
 - Buyer surveys

Remember
Revenue in ROLA

Sales-Service Relationship by the Two-Points Method

Approximation by two-points method
Determining Optimum Service Levels

- Cost vs. service
- Theory
 - Optimum profit is the point where profit contribution equals marginal cost
- Practice
 - For a constant rate,
 \[\Delta P = \text{trading margin} \times \text{sales response rate} \times \text{annual sales} \]
 \[\Delta C = \text{annual carrying cost} \times \text{standard product cost} \times \text{demand standard deviation} \times \text{over replenishment lead-time} \times \Delta z \]
 - Set \(\Delta P = \Delta C \) and find \(\Delta z \) corresponding to a specific service level
Determining Optimum Service Levels
(Cont’d)

- Example
 - Given the following data for a particular product

 Sales response rate = 0.15% change in revenue for a 1% change in the service level (fill rate)

 Trading margin = $0.75 per case
 Carrying cost = 25% per year
 Annual sales through the warehouse = 80,000 cases
 Standard product cost = $10.00
 Demand standard deviation = 500 cases over LT
 Lead time = 1 week
Determining Optimum Service Levels
(Cont’d)

Find ΔP

$$\Delta P = 0.75 \times 0.0015 \times 80,000$$

$$= \$90.00 \text{ per year}$$

Find ΔC

$$\Delta C = 0.25 \times 10.00 \times 500 \times \Delta z$$

$$= 1250 \Delta z$$

Set $\Delta P = \Delta C$ and solve for Δz, i.e., $\frac{90.00}{1250} = \Delta z$

$$\Delta z = 0.072$$

For the change in z found in a normal distribution table, the optimal in-stock probability during the lead time (SL^*) is about 92%.

ΔSL Levels in % for Various Δz Values

<table>
<thead>
<tr>
<th>ΔSL (%)</th>
<th>z_U</th>
<th>z_L</th>
<th>Δz</th>
</tr>
</thead>
<tbody>
<tr>
<td>87-86</td>
<td>1.125</td>
<td>1.08</td>
<td>0.045</td>
</tr>
<tr>
<td>88-87</td>
<td>1.17</td>
<td>-1.125</td>
<td>0.045</td>
</tr>
<tr>
<td>89-88</td>
<td>1.23</td>
<td>-1.17</td>
<td>0.05</td>
</tr>
<tr>
<td>90-89</td>
<td>1.28</td>
<td>-1.23</td>
<td>0.05</td>
</tr>
<tr>
<td>91-90</td>
<td>1.34</td>
<td>-1.28</td>
<td>0.06</td>
</tr>
<tr>
<td>92-91</td>
<td>1.41</td>
<td>-1.34</td>
<td>0.07</td>
</tr>
<tr>
<td>93-92</td>
<td>1.48</td>
<td>-1.41</td>
<td>0.07</td>
</tr>
<tr>
<td>94-93</td>
<td>1.55</td>
<td>-1.48</td>
<td>0.07</td>
</tr>
<tr>
<td>95-94</td>
<td>1.65</td>
<td>-1.55</td>
<td>0.10</td>
</tr>
<tr>
<td>96-95</td>
<td>1.75</td>
<td>-1.65</td>
<td>0.10</td>
</tr>
<tr>
<td>97-96</td>
<td>1.88</td>
<td>-1.75</td>
<td>0.13</td>
</tr>
<tr>
<td>98-97</td>
<td>2.05</td>
<td>-1.88</td>
<td>0.17</td>
</tr>
<tr>
<td>99-98</td>
<td>2.33</td>
<td>-2.05</td>
<td>0.28</td>
</tr>
</tbody>
</table>

*Developed from entries in a normal distribution table
Graphically Setting the Service Level

![Graph showing probability of being in stock during replenishment lead time, change in gross profit, and change in safety stock cost.]

Optimizing on Service Performance Variability

Setting service variability according to Taguchi

- A loss function of the form $L = k(y - m)^2$
 - $L = \text{loss in } \$$
 - $k = \text{a constant to be determined}$
 - $y = \text{value of the service variable}$
 - $m = \text{the target value of the service variable}$

- Service penalty only if outside this range—Traditional
- Missing target causes increasing penalty — Taguchi
Setting the allowable deviation from the target service level \(m \) is to optimize the sum of penalty cost for not meeting the service target and the cost of producing the service.

\[
TC = \text{service penalty cost} + \text{service delivery cost}
\]

If the service delivery cost is of the general form \(DC = A - B(y-m) \), then find the optimum allowed deviation from the service target.

\[
\frac{dTC}{d(y-m)} = 2k(y-m) + 0 - B = 0
\]

\[
y - m = \frac{B}{2k}
\]

Marginal delivery cost = marginal penalty cost

If \(m \) is set to 0, \(y \) is the optimal deviation allowed from target

Service Variability Example

Example Pizzas are to be delivered in 30 minutes (target.) Pizzas delivered more than 10 minutes late incur a penalty of $3 off the pizza bill. Delivery costs are estimated at $2, but decline at the rate of $0.15 for each minute deviation from target. How much variation should be allowed in the delivery service?

Find \(k \)

\[
L = k(y - m)^2
\]

\[
3 = k(10 - 0)^2
\]

\[
k = \frac{3}{10^2} = 0.03
\]

and \(y \) if \(m \) is taken as 0

\[
y - 0 = \frac{0.15}{2(0.03)} = 2.5 \text{ minutes}
\]

No more than 2.5 minutes should be allowed from the 30-minute delivery target to minimize cost.
Setting Service Levels

- Service treated as a constraint on design
- Planning for service contingencies

Measuring Service Performance

- Percent of sales on backorder
- No. of stockouts
- Percent of on-time deliveries
- No. of inaccurate orders
- Order cycle time
- Fill rate--% of demand met, % of orders filled complete, etc.

Service Contingencies

System Breakdown Actions

- Insure the risk
- Plan for alternate supply sources
- Arrange alternate transportation
- Shift demand
- Build quick response to demand shifts
- Set inventories for disruptions

Product Recall Actions

- Establish a task force committee
- Trace the product
- Design a reverse logistics channel